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Abstract 19 

Global warming may affect the regime of hydroclimatic systems and induce more frequent 20 

occurrences of extremes, such as drought, heat wave and flood. Apart from the assessment of 21 

each extreme, recent decades have witnessed a surge in the study of compound extreme, i.e., the 22 

concurrence of multiple extremes. To aid the understanding of compound extremes, a variety of 23 

studies has been conducted to assess the dependence among different variables or extremes.  As 24 

such, it is important to model multiple contributing variables of compound extremes to 25 

characterize the associated risk taking into account the dependence. In this study, a multivariate 26 

approach based on the meta-Gaussian model is proposed for the statistical analysis of compound 27 

extremes in the trivariate case. The application of the proposed approach is illustrated with the 28 

compound drought and hot extreme in the U.S. based on monthly precipitation, soil moisture and 29 

temperature from the North American Land Data Assimilation System (NLDAS-2). The 30 

likelihood of the occurrence of compound drought and hot extreme is assessed based on the joint 31 

distribution, which is shown to be higher in regions with significant land atmosphere interactions. 32 

The impact of precipitation and temperature on the occurrence of agricultural drought is also 33 

assessed based on the conditional distribution. Overall, results show that the proposed method 34 

provides a useful tool for statistical assessments of the compound extreme through constructing 35 

the joint and conditional distribution.  36 

Keywords: extreme; compound extreme; Meta-Gaussian model; joint distribution 37 
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1 Introduction 39 

Extremes, such as drought, heat wave, fluvial (pluvial or coastal) flood, may exert large impacts 40 

to the agriculture, energy, and ecosystems. Recent decades have witnessed a large number of 41 

occurrence of extremes, such as the 2011 Texas drought in the U.S. or the 2003 Europe heat 42 

wave (Coumou and Rahmstorf, 2012). Under the global warming, it is expected that more 43 

extremes may be induced imposing great threats to the human society and ecosystems (IPCC, 44 

2012; Rummukainen, 2012). Previous studies have shown the increase of various extremes at 45 

different temporal and spatial scales around the globe (Dai, 2011; Heim, 2015; Alexander, 2016).  46 

It has been well recognized that the impact of extremes may be related to multiple variables or 47 

processes. Recently, the compound extreme (i.e., the occurrence of concurrent or consecutive 48 

events leading to extreme impacts) has attracted much attention due to their even larger impacts 49 

on different sectors than that from individual extreme (Seneviratne et al., 2012; Leonard et al., 50 

2014).  These examples include a wide ranges of occurrences of multiple extremes at different 51 

regions and seasons, such as the drought and hot extreme, storm surge and high rainfall (Kew et 52 

al., 2013; van den Hurk et al., 2015; Wahl et al., 2015).  The combined drought and hot extreme, 53 

which may lead to larger impacts to agriculture and ecosystems than that from either in isolation, 54 

has been among the most commonly studied compound extremes  (Hao et al., 2013; Mazdiyasni 55 

and AghaKouchak, 2015; Cheng et al., 2016; Sharma and Mujumdar, 2017; Zscheischler and 56 

Seneviratne, 2017).  For example, based on  observations from  Climatic Research Unit (CRU) 57 

(Harris et al., 2013) and the University of Delaware (Willmott and Matsuura, 2001),  Hao et al. 58 

(2013) showed that the occurrence of warm/dry extremes has increased for the period 1978–2004 59 

relative to 1951–1977 across the globe, including central Africa, eastern Australia, and parts of 60 

Russia. Zscheischler and Seneviratne (2017) showed an increase of the occurrence rate of 61 
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extremely hot and dry warm seasons in  the 21st century including the northern extra-tropics, 62 

Amazon region and Indonesia based on historical simulations and climate projections in the 63 

Coupled Model Intercomparison Project Phase 5 (CMIP5) models.  64 

In defining the compound extreme, it has been highlighted that the dependence generally exists 65 

among different contributing variables or processes and is a key factor to characterize the 66 

compound extreme (Leonard et al., 2014; Martius et al., 2016; Zscheischler and Seneviratne, 67 

2017). Thus it is important to take into account the dependence among different variables in 68 

assessing the likelihood or probability of compound extremes and the potential risk (Risk= 69 

probability of events or trends × consequences (Zscheischler et al., 2018)). The joint distribution 70 

has been applied for the analysis of multivariate or compound extremes, among which the copula 71 

model has been commonly used (Salvadori et al., 2007; Hawkes, 2008; Durante and Salvadori, 72 

2010; Zscheischler and Seneviratne, 2017), mainly in the bivariate case. Due to the multiple 73 

components or processes in the occurrence of compound extremes, certain efforts have been 74 

devoted to the extreme analysis in higher dimensions (Genest et al., 2007; Zhang and Singh, 75 

2007; Kao and Govindaraju, 2008; Song and Singh, 2010; Wong et al., 2010). However, the 76 

commonly used parametric copula family general falls short in modeling dependence for 3 or 77 

even higher dimensions (Aas et al., 2009) and thus other models flexible in modeling 78 

dependence are desired.   79 

To facilitate the compound extreme modeling in high dimensions, we propose in this study the 80 

meta-Gaussian model for the statistical inference of compound extremes by transforming the 81 

individual extreme into the standardized extreme index (SEI). The model utilizes the intrinsic 82 

nature of SEI and provides an easy way to carry out the statistical modeling of dependence 83 

among different extreme indices. The application of the proposed model is illustrated for the 84 
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compound drought and hot extreme in the U.S. based on monthly precipitation, soil moisture and 85 

temperature from the North American Land Data Assimilation System (NLDAS-2)(Xia et al., 86 

2012).  87 

2 Method 88 

The compound extreme of particular interest in this study is the combined condition of low 89 

precipitation/soil moisture and high temperature (or the compound drought and hot extreme). 90 

This type of compound extreme is closely related to the “precipitation deficit flash droughts” that 91 

is also characterized by both high temperature anomalies and soil moisture deficits (Mo and 92 

Lettenmaier, 2016). The soil moisture deficit is closely related to the low precipitation and high 93 

temperature, which may deplete the soil moisture, leading to the occurrence of agricultural 94 

drought. This phenomenon of compound extreme can be assessed based on the conditional 95 

property of soil moisture given precipitation and temperature. Apparently, a trivariate 96 

distribution is needed to model the three variables to characterize the associated compound 97 

extreme.  In the following, we introduce the meta-Gaussian model and its application for 98 

statistical assessments of compound extremes.  99 

2.1 Meta-Gaussian model   100 

Multivariate distributions are commonly employed to model the dependence between hydrologic 101 

variables or properties. The meta-Gaussian model has been proposed to meet the need of 102 

representing a full range of association and allowing for flexible forms of marginal distributions 103 

for the modeling of bivariate variables in hydrology (Kelly and Krzysztofowicz, 1997). In the 104 

context of characterizing compound extremes, the joint modeling of multiple contributing 105 

variables in high dimensions is of primary interest. Consider a random vector (X1, X2) of two 106 

continuous random variables with marginal distribution function F1(X1) and F2(X2), respectively. 107 
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Let N denote the standard normal distribution in the univariate case and N-1 its inverse. By 108 

applying the normal quantile transformation (NQT)(Herr and Krzysztofowicz, 2005), two 109 

standard normal variates can be defined as Z1=N-1(F1(X1)) and Z2= N-1(F2(X2)). The  meta-110 

Gaussian model can be used to construct the bivariate distribution  of (X1, X2), which can be 111 

expressed as (Kelly and Krzysztofowicz, 1997): 112 
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where ρ is the Pearson’s correlation coefficient between Z1 and Z2; s and t are the integral 113 

variables.  114 

The basic idea of the meta-Gaussian model is to transform the variables under investigation into 115 

the normal variate based on the NQT and then the multivariate normal distribution can be used to 116 

model joint variations of multivariate variables (e.g., Z1 and Z2 ) (Kelly and Krzysztofowicz, 117 

1997; Montanari and Brath, 2004; Wilks, 2011). A suite of standardized extreme indices (SEI), 118 

which is advantageous in the consistency and comparability of extremes, has been developed 119 

based on the NQT, including the Standardized Precipitation Index (SPI) (McKee et al., 1993), 120 

Standardized Soil moisture Index (SSI)(Hao and AghaKouchak, 2013) and Standardized 121 

Temperature Index (STI)(Zscheischler et al., 2014). Based on the SEI, the joint and conditional 122 

analysis of the extreme indices can be achieved based on meta-Gaussian model. The meta-123 

Gaussian model is closely related to (or sometimes viewed as ) the Gaussian copula (Renard and 124 

Lang, 2007; Vogl et al., 2012; Ben Alaya et al., 2014; Serinaldi, 2016; Rueda et al., 2016) and 125 

has been used for the statistical modeling of hydroclimatic variables (Montanari and Brath, 2004; 126 
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Herr and Krzysztofowicz, 2005; Wu et al., 2011).  One of our focuses in this study is to derive 127 

the explicit form of the conditional distribution and thus we introduce the multivariate modeling 128 

of compound extremes based on the framework of the meta-Gaussian model.    129 

2.2 Conditional distribution 130 

Based on the property of the multivariate normal distribution, the conditional distribution of Y (a 131 

variable or vector) conditioned on X (a variable or vector) is also normally distributed  (Kelly 132 

and Krzysztofowicz, 1997; Wilks, 2011). An interesting property from the proposed meta-133 

Gaussian model is that the conditional distribution of a SEI conditioned on other SEIs is 134 

normally distributed.  We use three variables (Y, X1, X2), which represent SSI, SPI and STI, 135 

respectively, to illustrate the conditional distribution of Y with respect to X=[X1,X2]. Specifically, 136 

based on the meta-Gaussian model to construct the joint distribution of (Y, X1, X2), the explicit 137 

form of the conditional distribution of Y conditioned on X can be expressed as (Wilks, 2011): 138 

( )∑ XYXYμNXY || ,~|  (2) 

where μY|X is the conditional mean and ΣY|X is the conditional covariance matrix. These two 139 

parameters of the conditional distribution can be expressed as (Wilks, 2011; Hao et al., 2016): 140 

( )xxxyxyXY μxμμ −+= ∑∑ −1
|  (3) 

∑∑∑∑ −−= xyxxyxyyXY
1

|Σ  (4) 

where μX is the means of the vector X and μY is the mean of the variable Y; Σxx, Σxy, Σyx, and Σyy 141 

are covariance matric of the vector X and variable Y. A detailed expression of this equation for 3 142 

variables can be found in Hao et al. (2016). 143 
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3 Data and Results 144 

3.1 Data 145 

In this study, the monthly precipitation, 2-m air temperature (meteorological forcing data of 146 

NLDAS-2) and root zone soil moisture with a spatial resolution of 0.125 degree for the period 147 

from 1979-2014 were obtained from the NLDAS-2 project (Xia et al., 2012).  Due to the lack of 148 

the large scale and long-term observations of soil moisture for drought prediction(Ford et al., 149 

2015), the simulated soil moisture from land surface model is an useful alternative (Sheffield et 150 

al., 2004). In this study, the simulated soil moisture data were obtained from the Noah model, 151 

which is used as the land component for several operational model systems of the National 152 

Centers for Environmental Prediction (NCEP) (Xia et al., 2014; Sun et al., 2018). 153 

Since the compound drought and hot extreme is of primary interest, we perform the statistical 154 

analysis of the compound extreme in the summer season. The meteorological drought is 155 

generally characterized by SPI of multiple time scales based on the monthly precipitation. The 156 

soil moisture condition responds to the short scale precipitation anomalies while streamflow, 157 

groundwater, or reservoir storage responds to the long-term precipitation anomalies (Svoboda et 158 

al., 2012; Thilakarathne and Sridhar, 2017).  In this study, we use the  3-month SPI as the 159 

drought indicator, which has been commonly employed for the assessment of drought (or 160 

wetness) and its interaction with hot extreme (Mueller and Seneviratne, 2012; Zscheischler et al., 161 

2014). The 3-month SPI is also effective in capturing available moisture conditions in primary 162 

agricultural regions (e.g., a 3-month SPI at the end of August in the U.S. would capture the trend 163 

of precipitation during the reproductive and early grain-filling stage of certain crops)(Svoboda et 164 

al., 2012). The root zone soil moisture is a governing factor for vegetative growth and can be 165 

employed as a direct indicator of agricultural drought (Keyantash and Dracup, 2002; Sheffield et 166 
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al., 2004). The 1-month soil moisture (e.g., percentile) is commonly used for the monitoring of 167 

the agricultural drought  (Sheffield et al., 2004; Xia et al., 2014) and is also employed in this 168 

study based on the SSI. Following the previous study (Zscheischler et al., 2014), we characterize 169 

the hot extreme based on the STI of 1-month time scale, which can be used to capture the instant 170 

response of the terrestrial flux related to the plant.  171 

For deriving the SPI (or other standardized extreme indices), a variety of parametric distributions 172 

has been proposed and validated (Stagge et al., 2015; Vicente-Serrano and Beguería, 2016).  An 173 

alternative way to estimate the marginal distribution is the empirical method, which does not rely 174 

on a specific form of parametric distributions. In this study, the empirical Gringorten distribution 175 

(Gringorten, 1963) is employed to estimate the marginal distribution to derive these standardized 176 

extreme indices including SPI, SSI and STI. These indices for August were used for the 177 

subsequent analysis to illustrate the application of the proposed model in compound extreme 178 

analysis.  179 

3.2 Dependence pattern 180 

The correlation among the three indices during August is shown in Figure 1(a-c) and that 181 

significant at a 5% significance level is shown in Figure 1(d-f). It can be seen that there is 182 

significant correlation among the SPI, SSI and STI in large regions in the U.S.. The correlation 183 

between SPI and SSI during August is positive in all regions. This is intuitive in that the 184 

agricultural drought (or soil moisture) is generally dependent on the precipitation (or 185 

meteorological drought). The correlation between the SPI and STI is mostly negative during 186 

August, especially in the southern and southeastern U.S.. The negative dependence between SPI 187 

and STI is mainly due to the land surface interaction (i.e., the soil moisture deficit may induce 188 

the decreased evaporative cooling and increased sensible heat flux, leading to the high 189 
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temperature) (Seneviratne et al., 2010; Hirschi et al., 2011; Mueller and Seneviratne, 2012; Berg 190 

et al., 2014; Whan et al., 2015). For example, the negative correlation between the SPI and STI is 191 

even lower in the High Plains with significant land atmosphere interactions. The dependence 192 

between SSI and STI shows similar pattern to that between SPI and STI. These results 193 

highlighted significant dependence among these indices. Thus, it is important to take into 194 

account the dependence in the assessment of compound drought and hot extremes.   195 

3.3 Joint probability of compound extreme 196 

In analyzing the compound drought and hot extreme based on the precipitation/soil moisture 197 

deficit and high temperature, the joint probability of SPI/SSI lower than certain thresholds and 198 

STI higher than certain thresholds is of particular interest. With the three extreme indices SSI, 199 

SPI, and STI represented by Y, X1, and X2, the joint probability P(Y<y, X1<x1 and X2>x2) of the 200 

compound extreme based on the meta-Gaussian model can be obtained as:  201 

),,(),(
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where the function Ф2 (Ф3) is the bivariate (trivariate) standard normal distribution function. The 202 

joint percentile (or probability) has been commonly used for the characterization of the overall 203 

condition of multiple hydrologic variables/extremes (Beersma and Buishand, 2004; Kao and 204 

Govindaraju, 2010; Chebana and Ouarda, 2011). In the context of multiple extreme indices, the 205 

joint percentile in equation (5) summarizes the joint condition from extreme indices and can be 206 

used to measure the severity of the compound drought and hot extremes.  Specifically, the low 207 

probability indicates severe conditions of the compound extreme.  208 
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The joint probability estimated from equation (5) for the period August 2011 in U.S. is shown in 209 

Figure 2, along with the other three indices SPI, SSI, and STI. The SPI and SSI show severe 210 

drought conditions (with index values lower than -1) in large regions in southern U.S.. The STI 211 

shows anomaly high temperature (with index value higher than 1) in these regions. The 212 

extremely low SPI (and SSI) and high STI imply compound drought and hot extreme during this 213 

period. The joint percentile (or probability) for the period is extremely low (<0.05) in the 214 

southern U.S., particularly in Texas, indicating the severe condition of the compound extreme 215 

during 2011.   216 

For the statistical assessment of compound extremes, it is also of interest to assess the probability 217 

of specified thresholds of the individual component. In this section, we focus on the concurrent 218 

extreme of lower SPI/SSI and higher STI. Here we specify the threshold value for SSI/SPI as 0, -219 

0.5, -0.8 and -1.2 and that for STI as 0, 0.5, 0.8 and 1.5, which corresponds to 50th, 30th, 20th and 220 

10th percentile for SPI/SSI (or 50th, 70th, 80th and 90th for STI). The threshold values -0.5, -0.8 221 

and -1.2 correspond to the abnormally dry, moderate drought, and severe drought, as defined in 222 

the U.S. Drought Monitor (USDM)(Svoboda et al., 2002). The joint probability of this type of 223 

compound extreme in the U.S. is shown in Figure 3. We take the compound extreme with 224 

SPI/SSI<-0.8 and STI>0.8 as an example. It can be seen that the probability of compound 225 

drought and hot extreme is relatively high along the regions with significant negative 226 

correlations between SPI (or SSI) and STI. The is likely due to the interaction between the 227 

moisture deficit and high temperature in this region, which may induce the concurrent dry and 228 

hot extremes, leading to the high likelihood of compound extremes. Similar patterns of the low 229 

joint probability for other thresholds were also revealed from Figure 3. The difference is that 230 
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with thresholds of the SPI and SSI get lower (and that of the STI gets higher), the joint 231 

probability of the compound extreme become even lower.  232 

3.4 Conditional probability of compound extremes 233 

The conditional probability enables the assessment of the impact of temperature and precipitation 234 

on the occurrence of agricultural drought. The conditional probability of soil moisture lower than 235 

30th percentile (or SSI<-0.5) given different precipitation deficit (SPI=-0.5, -1.2) and high 236 

temperature condition (STI=0.5,1.2) can be obtained from equation (2) and is shown in Figure 237 

4(a-d). Comparing Figure 4(a) and (b) shows that the precipitation deficit significantly affects the 238 

agricultural drought in most regions in the U.S., which is easy to understand since 239 

meteorological drought is generally the prerequisite of the agricultural drought. Comparing 240 

Figure 4 (a) and (c) shows the impact of the temperature on the agricultural drought. It can be 241 

seen that significant changes of the probability are mainly in the High Plains region and 242 

southeastern regions, where the soil moisture-temperature interactions are most profound (Koster 243 

et al., 2009). The main reason is that, as stated before, the soil moisture deficit induces warm 244 

temperature due to the soil moisture-temperature interaction during summer. Meanwhile, the 245 

warm temperature and associated high evaporation may lead to dry soil moisture and further 246 

exacerbate the occurrence of drought, leading to the co-occurrence of drought and hot extreme. 247 

In the western region (with low correlation between SSI and STI), the changes of probability 248 

from Figure 4(a) and (c) is relatively small, which implies that the temperature does not play an 249 

important role (compared with precipitation) in affecting the agricultural drought in this region. 250 

Comparing Figure 4 (a) and (d) shows the combined impact from the both precipitation and 251 

temperature, implying that given the low precipitation and high temperature, the condition of the 252 

agricultural drought is expected to be even severe.   253 



13 
 

3.5 Conditional return period  254 

A commonly used way to assess the likelihood of extremes is through the return period (RP) 255 

with respect to an exceedace or nonexceedance probability (P) of interest (RP=1/P). We use the 256 

2011 Texas drought and hot extreme as an example to estimate the conditional return period. We 257 

first obtain the monthly precipitation, soil moisture and temperature of Texas by taking the 258 

average of all grids for the whole state. The three indices are then computed based on the 259 

statewide average of each variable. The scatter plot of these indices are show in Figure 5. A 260 

noticeable pattern is the negative (positive) dependence between SSI and STI (SPI), which 261 

implies the importance of analyzing the agricultural drought from a multivariate approach. The 262 

meta-Gaussian model is then constructed to estimate the conditional distribution and return 263 

period.  264 

To assess the performance of the mega-Gaussian model in modeling these three indices, 265 

realizations of the random vector (Z1, Z2, Z3) are generated and compared with the observations. 266 

The statistical simulation is achieved based on the conditional distribution method (Johnson, 267 

1987; Aas et al., 2009). First, generate three uniform random values w1, w2 and w3 between [0, 1], 268 

which can be achieved with the use of the random number generator function rand in MATLAB. 269 

The random variate z1 can be generated by solving z1=Q-1(w1). Based on equation (2), one can 270 

derive the conditional distribution of Z2 condition on Z1, i.e., F(Z2|Z1). The random variate z2 can 271 

be generated by solving w2= F-1(z2|z1).  Similarly, the conditional distribution of Z3 condition on 272 

Z1 and Z2, i.e., G(Z3|Z1,Z2), can be derived from equation (2). The random variate z3 can then be 273 

generated by solving w3= G-1(z3|z1,z2). A sequence of simulations with the sample size n=150 274 

from this procedure is shown in Figure 5(a-c). It can be seen that this model performs relatively 275 

well in modeling the dependence among different indices.  276 
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The conditional distribution of the SSI conditioned on the SPI and STI for August 2011 is 277 

estimated from equation (2), which is normal distribution and is shown in Figure 5(d). The 278 

conditional return period can be employed to assess the likelihood of the agricultural drought 279 

given meteorological drought and hot extreme. We compare the univariate return period of the 280 

agricultural drought and the conditional return period given the meteorological drought and hot 281 

extreme during this period. In the univariate case, the empirical return period of the soil moisture 282 

(or agricultural drought) for August 2011 is estimated as 64.5 years based on the Gringorten 283 

plotting position formula (Gringorten, 1963). The conditional return period of the agricultural 284 

drought with respect to the SPI and STI for August 2011 is estimated as 3.0 year. One can see 285 

that the conditional return period is much shorter than the univariate period. The reason is that 286 

given the low precipitation and high temperature, it is expected that the occurrence of the 287 

agricultural drought will be more frequently. The proposed framework thus provides a useful 288 

tool in estimating the likelihood of the compound extreme in this regard.  289 

4 Conclusions  290 

Due to the intrinsic nature of dependence among multiple contributing variables or processes of 291 

the compound extreme, statistical inference of the relationship among different extremes requires 292 

suitable dependence modeling. In this study, the meta-Gaussian model is proposed for the 293 

modeling of multiple extremes for the statistical analysis of the compound extreme in the U.S. 294 

based on monthly precipitation, soil moisture and temperature from NLDAS-2. The application 295 

of the model is illustrated for statistical assessments of the compound drought (with SPI and SSI 296 

as the indicator) and hot extreme (with STI as the indicator). The likelihood of the occurrence of 297 

compound drought and hot extreme is higher in regions, such as High Plains, with significant 298 

land atmosphere interactions. The compound drought and hot extreme during August 2011 in 299 
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Texas was used as a case study for the multivariate analysis. Results show the conditional return 300 

period of SSI with respect to the SPI and ST is around 3.0 years, which is much shorter than the 301 

univariate empirical return period 64.5 years.  302 

The use of Meta-Gaussian method bears the advantage that the multivariate distribution in the 303 

high dimension can be derived straightforward with an explicit form. Though extreme indices 304 

may not strictly follow the multivariate normal assumption, the meta-Gaussian model is still a 305 

useful approximation to the parent distribution of the underlying data and many properties are 306 

robust to the departure from normality (Rencher and Christensen, 2012). This study mainly 307 

focused on the compound extreme defined by the precipitation deficit, soil moisture deficit and 308 

high temperature. It can be essentially applied to other types of compound extremes, such as the 309 

heat wave flash droughts characterized by the low soil moisture (SM) induced by high 310 

temperature and evapotranspiration (Mo and Lettenmaier, 2015; Otkin et al., 2018).  311 

In this study, the SPI, SSI and STI based on the monthly precipitation, soil moisture and 312 

temperature are employed for characterizing the compound drought and hot extremes. Certain 313 

extremes, such as the flash drought and heat wave, may occur in a much shorter time scale. Thus, 314 

extreme indices of shorter time scales (e.g., daily, 5-day) may be used instead for the assessment 315 

of the compound extremes or impacts. In addition, we use the SPI, SSI and STI of the same 316 

month to define the compound extreme in this study.  In reality, there may be some time lags  317 

between the meteorological drought and hydrological drought, between the agricultural drought 318 

and high temperature, or between extremes drivers and impacts (Mueller and Seneviratne, 2012; 319 

Zscheischler et al., 2014; Van Loon, 2015; Nicolai-Shaw et al., 2017). Thus, the time lag 320 

between the extremes (or impacts) should also be taken into account in statistical 321 

characterizations of the compound extreme and its impact based on the proposed model. 322 
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Moreover, the selection of time scales of SPI, SSI and STI was mainly based on the common 323 

practices in previous studies for illustration purposes in this study. These indices have been used 324 

to study drought or hot extremes and the relationship may vary among the indices of different 325 

time scales (or regions, layers of soil moisture) (Mo, 2008; Mishra and Singh, 2010; Sehgal et al., 326 

2017). Thus careful assessments are needed in selecting the time scale of different indices to 327 

assess compound extremes of interest. Due to the limited availability of the soil moisture 328 

observations, the soil moisture simulated from land surface models was used in the statistical 329 

assessments of the compound extreme. This may induce uncertainties in the results (e.g., 330 

correlation pattern) and thus findings from this study should be interpreted with caveats.    331 

The potential limitation of the proposed model is that it may not be quite accurate in 332 

characterizing the dependence at the extremal level (e.g., 99 percentile) (Wang et al., 2014). For 333 

the complicated dependence modeling (e.g., asymmetric dependence) in high dimensions, the 334 

vine copula or the pair-copula construction (PCC) is a promising alternative, which has been 335 

developed through decomposing the dependence structure into bivariate dependence that can be 336 

modeled with bivariate copulas (Aas et al., 2009; Brechmann and Schepsmeier, 2013; Liu et al., 337 

2015; Liu et al., 2016). For example, the compound flood event resulting from the joint storm 338 

surge and high river runoff in Ravenna, Italy has been studied using the vine copula to construct 339 

the high-dimensional distribution (Bevacqua et al., 2017). We stress that the proposed method 340 

provides an alternative way to other tools (e.g., vine copula) for compound extreme analysis but 341 

does not mean to replace the currently used models. Statistical assessments of the multivariate 342 

behavior of different contributing variables of the compound extreme in this study may provide 343 

useful insights into the likelihood of compound extremes and aid the mitigation efforts under 344 

climate change.  345 

346 
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 540 

7 Figure  541 

 542 

 543 

Figure 1 Dependence pattern among SPI, SSI and STI of August for the period from 1979-2014 544 

in the U.S. . (a)-(c) Correlation coefficients among three indices. (d)-(f) Significant correlation 545 

coefficients at a 5% significance level among three indices.  546 
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 548 

  549 

  550 

Figure 2  The SPI, SSI and STI values and the joint probability (JP) for August 2011 in the U.S.. 551 

The joint probability (JP) of the compound drought and hot extreme is defined as P(SSI <y, SPI 552 

<x1 and STI >x2) , where y, x1 and x2 are the SSI, SPI and STI value of August 2011. 553 
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 555 

Figure 3  The probability of the compound extreme of low SPI/SSI and high STI with threshold 556 

values 0, -0.5, -0.8 and -1.2 for SPI/SSI and 0, 0.5, 0.8 for STI.     557 
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 559 

Figure 4  The conditional probability of SSI<-0.5 given different values of SPI and STI. (a) 560 

P(SSI<-0.5 |SPI=-0.5, STI=0.5); (b) P (SSI<-0.5|SPI=-1.2, STI=0.5); (c) P (SSI<-0.5 |SPI=-0.5, 561 

STI=1.2) and (d) P (SSI<-0.5 |SPI=-1.2, STI=1.2).  562 
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 564 

Figure 5 Assessments of the agricultural drought conditioned on SPI and STI for the period 565 

August 2011 in Texas, U.S.. (a-c) Scatterplots of observed and simulated pairs of SPI, SSI and 566 

STI. (d) Conditional probability of SSI conditioned on SPI and STI for August 2011 in Texas.  567 




